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ANOMALOUS DIFFUSION IN A LINEAR PLASMA GENERATOR

O. WALDMANN1, H. MEYER2, AND G. FUSSMANN3

ABSTRACT. Plasma production and particle transport of the magnetized plasma in the
linear device PSI-2 are investigated by analyzing the radial density and electron temper-
ature profiles obtained from Langmuir probe measurements. Additional information on
the atomic (H) and proton temperatures is obtained from high resolution Doppler spec-
troscopy. The density profiles are found to be hollow, but do extend radially far beyond the
visible rim with an exponential decay length of 3 cm. They can be explained by parallel
and perpendicular diffusion in combination with a cylindrical source extending along the
magnetic field all over the device. A large perpendicular diffusion coefficient in the range
of 5 m2/s is inferred from the experimental results.

The definitive version is available at www3.interscience.wiley.com

1. INTRODUCTION

The transport of a fully ionized plasma across a strong magnetic field has been a subject
of controversial discussion for a long time. Already in the early 50-ies of the last century
one realized that coulomb collisions among the charged particles will cause a random walk
of the electrons and ions because each collision is associated with a shift of the order of
the Larmor radius (ρ). First theoretical treatments of the problem by Taylor [1] in 1961
revealed that this so called “classical diffusion” is characterized by a very small diffusion
coefficientDclass

⊥ = ρ2
e νei ∼ neB

−2 since only the rather ineffective electron-ion collisions
contribute to the particle transport. Because of ρ2

e νei = ρ2
i νie this diffusion coefficient is

equal for electrons and ions, hence the transport is intrinsically ambipolar and no electric
fields are needed to enforce a quasi neutral plasma flux.
During the following years questions came up with respect to the validity of classical dif-
fusion since in the experiments generally much larger diffusion coefficients were found.
Only the very quiescent Q-machines (see [2]) showed values compatible with Dclass

⊥ ≈
0.001 . . . 0.01 m2s−1 but particularly toroidal devices like stellarators and tokamaks were
characterized by dramatically larger values of typically 1 m2s−1. However, D. Pfirsch and
A. Schlueter [3] noticed that in a torus a considerably enhanced transport is to be expected
because of the curvature of the field lines. But even taking a corresponding factor of order
10 to 20 into account the experimental diffusion coefficients remained much larger than
the predicted ones. L. Spitzer [4] seems to be the first who had the idea that fluctuating
electric fields might be the reason for the – meanwhile called – “anomalous” transport.
He derived an expression for the diffusion coefficient in which the magnetic field entered
only via 1/B, i.e. much weaker than in the classical case. D. Bohm fixed a pre-factor that
had been left undefined by Spitzer to 1/16 (without presenting the derivation) and came
up with his famous formula DBohm

⊥ = kBT/(16eB) that appeared to be in agreement with
many observations (see e.g. [5]).
Anomalous plasma transport caused by turbulent electric fields is still a matter of actual
research and a large number of theoretical and experimental papers is devoted to this topic
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(see e.g. [6]-[9]). In what follows we want to add an experimental contribution based on
observations made in the linear device described in the next section. For quite a while we
were uncertain about the transport prevailing in this stationary plasma since the observa-
tions appeared to be contradictory. In fact, in 2000 we published a paper [10] claiming
that classical diffusion is the prevailing transport in the device. This was inferred from
the observation of hollow density profiles existing over a length of more than 2 m along
the magnetic axis. The hollowness of the profiles demanded a diffusion coefficient of less
than 0.04 m2s−1, being about the classical value. This assumption was corroborated by
the observations of so called “plasma shadows” [11] that are produced when obstacles like
probes are inserted into the plasma. A dark shadow extending over a length of 1 m or more
with a surprising sharp contour is to be seen in the down stream direction. On the other
hand, the walls of the cylindrical stainless vessel get astonishingly hot (50. . . 80 C) during
long term operation. This is difficult to explain invoking radiative heating alone. More-
over, the plasma edge produced by the limiting effect of the hollow anode does not show
an abrupt decay as it were to be expected in case of a very small diffusion coefficient. In
particular this latter inconsistency caused us to resume the studies on perpendicular trans-
port. We will show that in contradiction to our earlier interpretation a consistent picture
can be obtained when the plasma sources in the streaming region are taken carefully into
account and anomalous diffusion is assumed.
From a principal point of view measurement of the diffusion coefficient is a straight for-
ward matter. According to the definition of a diffusive flux ~Γ = −D ∇n it should be
determined from the ratio of the flux density and the density gradient. Clearly, the density
gradient is not so much a problem but the flux density is difficult to measure. Most suitable
are passive or active optical methods (LIF) relying on the Doppler effect. However, the
associated velocity shift of the ion distribution 〈v〉 = D|∇n|/n is often too small to be
detected. Apart from the fact that these direct methods fail in case of hydrogen plasmas
treated in this study, they cannot be applied to PSI-2 plasmas because of the very small
mean velocity which is estimated to be less than 1% of the thermal one.
One is therefore obliged to invoke another (indirect) method as it is for example enabled by
the continuity equation. There is, however, the difficulty that under stationary conditions
(our case) the information contained in the radial profiles of plasma density is insufficient
to determine the perpendicular diffusion coefficient and particle sources as well as parallel
transport must also be taken into account. It is an advantage that in the present situation
the sources are confined to a thin cylindrical shell allowing an analytical treatment of the
problem. It will be shown in Sec. 4.1 that without parallel transport (very long cylinders or
tori) the radial profiles degenerate to a function that does not contain any information on
the perpendicular diffusion coefficient. Nevertheless,D⊥ can be obtained from the particle
balance if the source strength is known. In sections 4.2 a and 4.2 b two different approaches
are pursued to incorporate the parallel losses. They lead to very similar results Sec. 5). In
both cases there are two different ways to determine D⊥ from the particle balance: either
by including the source region or by excluding it. In the latter case the perpendicular losses
are balanced by the parallel ones (∇⊥ · ~Γ⊥ +∇‖ · ~Γ‖ = 0) and if the latter are known, the
former, and thus D⊥ can be determined.
A description of the apparatus and the main diagnostics is given in Sec. 2. Apart from the
radial profiles of electron density and temperature (ne, Te) that are obtained from Langmuir
probes additional information on the ion temperature and, most important, on the neutral
density are needed. This experimental material – mainly delivered by spectroscopy – is
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presented in Sec. 3. The results attained from the various methods and approximations are
presented in Sec. 5. They are followed up by a short discussion given in the summary.

2. EXPERIMENTAL SET-UP

2.1. Plasma generator PSI-2. The plasma generator PSI-2 shown in Fig. 1 is a linear de-
vice showing cylindrical symmetry. The plasma is produced by an electrical current (typi-
cally 50 to 500 A) flowing between a heated hollow cathode (inner and outer diameters 6.0
and 7.0 cm, respectively) made from LaB6 and a massive Mo anode 20 cm in length with a
conical bore shrinking from 8 to 6 cm in diameter in the down stream direction. The anode
is earthed whereas the potential of the cathode is typically between −50 to −100 V. The
working gas, such as hydrogen or argon, is replenished from the cathode end. After ioniza-
tion and heating a pressure gradient is built up that drives the produced plasma downstream
toward the neutralizer plate. An axial magnetic field (B) confines the plasma radially. The
radius of the visible plasma column is typically rplas ≈ 5 cm; it varies with the local mag-
netic field strength according to flux conservation, i.e. B(z)r2plas = B(zanode)r2anode. In a
similar way we can also map the cathode along the field lines: B(z0)r20 = B(zcath)r2cath.
It turns out that at the position of measurement (indicated in Fig. 1) the magnetic field
strength is equal to the cathode value, thus, predicting r0 = rcath = 3.0 . . . 3.5 cm. The
experimentally observed value r0 = 3.5 cm (see Fig. 5) appears hence to coincide with the
outer radius of the cathode.
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FIGURE 1. Plasma
Generator PSI-2

I 200 A
B 0.1 T
ne(max) 7 · 1017 m−3

Te(max) 11 eV
Ti 0.4 Te
pH2 0.050 Pa
TH 1800 K

FIGURE 2. Plasma
parameters in the
target chamber

After leaving the anode the plasma streams through a differential pumping stage into
the target chamber and towards a neutralizer plate made from Mo. The target chamber is
separated from the pumping stage by diaphragms to reduce the neutral pressure in the rear
part of the device. The chamber extends over a length of 1.5 m and its radius (rw = 20 cm)
is large to reduce the plasma interaction with the wall of the vessel to a very low level. In
a distance of 2.6 m from the cathode the plasma hits the neutralizer plate where it finally
recombines and the neutral gas is pumped away. Usually the neutralizer plate is kept at
floating potential. Under these (normal) conditions the whole region between anode and
neutralizer target is free of electrical current.
Because of the ring shaped discharge region in the vicinity of the cathode the plasma
shows generally hollow profiles in electron temperature and density (cf. Fig. 5) all along
the magnetic axis. Only in case of very high densities (ne ≥ 3 · 1019m−3) flat or peaked
profiles are found in the target region.
Some characteristic parameters are collated in Table 2. pH2 = 0.05 Pa is the pressure
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of the molecules as measured by a “viscovac” pressure meter in a dead end duct about
1 m away from the plasma where the temperature is around 30 ◦C, i.e. TH2 = 300 K.
From the ideal gas law pH2 = nH2kBTH2 we obtain the molecular density to nH2 = 1.2 ·
1019 m−3. A crucial quantity is the temperature of the neutral atoms in the plasma region.
First measurements using thin, shielded thermocouples yielded temperatures around 800
K. However, because of radiation and heat conduction losses they tend to underestimate
the temperature considerably and large corrections are necessary. We therefore rather rely
on the spectroscopically determined value TH ≈ 1800 K described in Sec. 3.
For the plasma region the ionization and dissociation lengths are estimated at λion = 2.4 m
and λdiss = 0.16 m, respectively. Hence, the molecules are likely to be disintegrated to
atoms within a few passages through the plasma whereas the atoms have a much longer
life time and therefore do occur with about ten times higher abundance. They build up an
almost homogeneous density that can be estimated assuming pressure equilibrium of the
neutrals between duct and target chamber. Neglecting the molecules in the latter we get
nH = nH2 · (TH2/TH) = 2 · 1018 m−3.

2.2. Langmuir probes. Single probe measurements [12] with two Langmuir probe tips of
different dimensions (small: diameter d = 1.5 mm, height h = 1.5 mm; large: d = 8 mm,
h = 8 mm) have been performed. Because of the proportionality of the ion saturation
current to the collecting area of the probe tip, the sensitivity of the measurement is deter-
mined by the size of the probe tip. A large probe tip is suited for a region of low electron
temperature and density but the energy picked up by the probe in a region of higher density
and temperature can easily be too large and cause melting. For this reason the two probes
described above were used for the outer and inner plasma regions with an overlap zone
of about 1 cm in radial direction. The application of the large probes in the outer plasma
region is actually an essential improvement. They eliminate the preliminary uncertainty
with respect to the true decay lengths in the wings. In fact, it is found that the smaller
probes have the tendency to overestimate the density considerably if ne < 1017m−3.
The I-U characteristics of the single probes are evaluated applying Langmuir probe theory
for a collisionless regime (see [13] and references therein). The electron density is evalu-
ated from the ion saturation current. Since the ion gyro-radius is larger than the probe diam-
eter – and besides the ions are hardly magnetized – the total tip surface Ai = πdh+πd2/4
is taken as collecting area. The electron temperature is determined from the exponential
slope of the current at floating potential. In addition Ti ≈ 0.5 Te can be assumed as ex-
plained in Sec. 3.1 and in [14]. The currents do show well defined ion saturation levels;
no indications for deviations from Maxwellians are to be inferred from the characteris-
tics. The radial movement, the applied voltage and the measurement of the current of the
Langmuir probes are computer controlled. Thus complete radial profiles with good spatial
resolution can be measured.

3. EXPERIMENTAL DATA

3.1. Measurement of the proton temperature. Information on the ion temperature can
often be obtained from Doppler broadening of some suited emission line. In case of hydro-
gen, however, it is generally believed that this method fails because there is no line emis-
sion from the protons. Nevertheless, we found the method applicable due to the charge
exchange effect. To explain the method we refer to Fig. 3 which shows a spectrum of Hα

recorded with a 3 m spectrometer providing a resolution as high as λ/∆λ ≈ 105. As to be
seen, the spectrum is not symmetric with respect to the maximum of intensity but shows a
shoulder on its red wing. It is important to note that the spectrum was taken along a chord
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of sight in the upper halve of the plasma column. In fact, changing to a chord in the bottom
region the shoulder appears on the blue wing of the spectrum and it disappears along a
central chord. Moreover, changing the direction of the magnetic field causes the spectral
asymmetry to invert sign too. The shoulders are therefore associated with the rotation of
the protons (see [15] for further information).
The spectroscopic shift is provided by excited H atoms that just have been generated from
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the protons by charge exchange and therefore still reflect their motion. As indicated in Fig.
3 it is possible to decompose the spectra in a cold, unshifted component and a shifted hot
one. The cold component is representative of such H atoms that have been produced by dis-
sociation and left excited in the n = 3 state. As shown in Fig. 4 their temperature is about
0.16 eV ≈ 1800 K. Of equal interest is the hot component that delivers information on the
plasma rotation velocity and the proton temperature. The shift ∆λs = 0.002 nm and half-
width ∆λ1/2 = 0.035 nm taken from Fig. 3, for instance, correspond to vrot = 915 m/s
and Ti = 3.9 eV.
The above method has been applied to space resolved measurements. After Abel inversion
[16] the proton temperature profile shown in Fig. 4 could be reconstructed from the mea-
surements.
Ti is seen to be about 2.5 to 4 eV in the core region r < 3.5 cm which is about 40%
of the electron temperature. Unfortunately, intensity problems do not allow to extend the
measurement to the outer plasma regions. It is worth to mention that these results are sup-
ported by laser induced fluorescence (LIF) measurements performed in argon. From these
we learnt that the ion temperature is typically about 1/2 of the electron temperature [14].

3.2. Density profiles. The hollow profile within and the slow decay of density outside
of the visible plasma column (r ≈ 5 cm) can be clearly seen in Fig. 5 representing a
measurement in hydrogen (I = 200 A). The black area in Fig. 5 is the projection of the
cathode.
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Actually, in Fig. 5 only the data for x ≤ 0 are shown where x is the direction from top
to bottom. Data with x ≥ 0 are ignored because at these positions the probe shaft is
increasingly perturbing the measurement due to cooling of the corresponding magnetic
surface. In Fig. 6 the experimental profile is again presented but this time on a logarithmic
scale to visualize the slow exponential decay in the outer region. In fact, the density in the
region r ≥ 3.5 cm decays exponentially with a characteristic decay length of λ = 3.0 cm.
At a radius of r = 10.5 cm the density is still about 10% of the maximum value at r =
3.5 cm. The “hollowness” expressed by the ratio of maximum density (7 · 1017 m−3) and
core value ne(0) is approximately 7:5.
Actually the density shows three regions of exponential decay outside r = 4 cm, which
are not fully understood yet (see Fig. 6). The first (r = 4 . . . 6 cm) and the third (r =
10 . . . 12 cm) region have the same decay length, while the second one (r = 6 . . . 10 cm)
has a shorter one. However, the theory presented in the following sections aims to explain
the general trend rather than the fine structure of the profile.

4. THEORY: DIFFUSION PROFILES IN CASE OF AN EXTENDED PLASMA SOURCE

In what follows we will assume that the hot electrons leaving the cathode region estab-
lish a source all along the device. Although there is no doubt that the plasma production
rate in the discharge region is much higher than in the remaining part of the device one
has to take into account that a major fraction of the primary produced plasma is lost by
recombination at the anode surface. On the other hand, the energy flux due to parallel
electron heat conductivity into the current free region is regarded as essential. It is this
heat flux which provides a rather high electron temperature (enabling ionization) on the
magnetic surface being in contact with the cathode. The importance of this source term
will be verified in the following section.

4.1. Cylindrical source of infinite length. It is instructive to consider first a source con-
sisting of a thin cylinder r0 −∆/2 ≤ r0 ≤ r0 + ∆/2 of infinite length. The equation of
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continuity then reads

∂ne

∂t
=

1
r

∂

∂r
rD⊥

∂ne

∂r
+ q = 0 , (1)

where the source strength q = nenH〈σionve〉 = neνion is determined by ionization. The
ionization frequency νion is given by the product of the neutral density nH and the ionization
rate coefficient S(Te) = 〈σionve〉 which is a monotonously rising function of the electron
temperature. Per unit length and time the source produces

Ṅe =
∫ ∞

0

q 2πr dr = ne(r0)νion(r0)2πr0∆ (2)

electrons and ions. In Fig. 7 the measured profiles of Te and the ionization source strength
q are shown, using either [17] or the simple formula given in [18] to calculate the ionization
rate coefficient for hydrogen. We see that the latter is approximately a Gaussian centered at
r0 = 3.5 cm with full half width ∆ = 2 cm. With Te(r0) ≈ 11 eV and nH ≈ 2 · 1018 m−3

we estimate νion(r0) = 1.4 · 104 s−1 and inserting this into Eq. (2) we get Ṅe = 0.44 ·
1020 m−1s−1.
We are now also in the position to assess the importance of the source term. We can do this
by multiplying the ratio Ṅe/Ne = νion by the residence time which later will be estimated
at τ = 0.26 ms. The result νionτ = 4 tells us that the number of electrons and ions entering
the current free region via the anode will be amplified by this factor due to ionization.
For convenience we want to simplify the source function even further by replacing it by a
Dirac function: q = ne(r0)νion(r0)∆ δ(r − r0). Inserting this into Eq. (1) and assuming
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FIGURE 7. Normalized radial profiles of electron temperature (blue,
dotted, Te,max = 11 eV), source strength q̂ ∝ ne Sion(Te) (black,
solid, Smax = 7 · 10−15 m3s−1) and its approximation q̂ =
exp (−((r − 3.5)/1.4)2) (red, dashed).

D⊥ = const. Its solution is obtained by integration to

ne =

{
ne(0) r ≤ r0
ne(0)− Ṅe

2πD⊥
ln ( rr0 ) r > r0

. (3)

Because ln r rises monotonously, ne will become negative beyond a certain radius which,
of course, is not acceptable from a physical point of view. It actually means that a stationary
solution is not possible without an absorbing wall. We will assume that such a wall enforces
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the density to vanish at radius rw
1. Then Eq. (3) becomes

ne = ne(0)

{
1 r ≤ r0
1− ln (r/r0)

ln (rw/r0)
r0 < r ≤ rw

. (4)

Under stationary conditions the total flux leaving the source region

Φ = −2πr0D⊥
dne

dr
|r=r0 = 2πD⊥ ne(0)/ ln (rw/r0) (5)

must equal the production rate Ṅe given by Eq. (2). Because of ne(r0) = ne(0) the density
at source radius cancels and the balance reads

D⊥ = νion(r0) r0 ∆ ln(rw/r0) , (6)

which alternatively may be derived by equalizing the second lines in Eqs. (3) and (4).
Inserting the values already given we get D⊥ = 17.2 m2/s. If the profile given by
Eq. (4) would fit to the measurements we would thus have determined the diffusion co-
efficient though this quantity does not explicitly appear in the solution for the ne pro-
file. Let us check whether this solution complies with our measurements. With the radii
r0 = 3.5 cm and rw = 20 cm for source and wall we get for the ratio ne(3r0)/ne(r0) =
1− ln(3)/ ln(20/3.5) = 0.37 which is by a factor 3.7 too large compared to the measured
ratio of 0.1. Parallel particle losses along the field lines are therefore to be included which
will result in a faster decay of the density profile.
The question remains: what does actually determine the density at the source radius ne(r0)?
The answer is hidden in the energy equation. While the major part of the input power P is
lost at the anode and transferred to the neutralizer plate by electron heat conduction only
a small fraction of about η = 5 − 10% is available for ionization, excitation and heating
in the target chamber Pion = ηP = LchamṄeĒ with Ē = Eion + Eexc + 5/2(kTe + kTi).
Because of Ṅe ∝ ne(r0)νion(r0) we may write P = c1ne(r0)νion(r0) where c1 is a con-
stant. From the particle balance Eq. (6) we have on the other hand νion = c2D⊥, where
c2 is another constant containing the slope of the ne-profile at r = r0 . It then follows
ne(r0) = P/(c1c2D⊥).

4.2. Diffusion with source and loss terms. In the last section it was shown that the as-
sumption of pure radial diffusion does not lead to a density profiles consistent with the
observation. It is therefore necessary to consider the particle losses parallel to the field
lines too. We will consider two different approximations to take these losses into account.
The first approach is to replace the corresponding term -∂zΓ‖ by a loss term−νlossne. This
simple approach is widely used to treat particle transport in the scrape-off region of fusion
devices (see e.g. [20]). In the second case the parallel flux density Γ‖ = u‖ne is converted
into a diffusive term −D‖∂zne which is shown to be possible if the temperature along the
field lines is constant. This invariance of the axial temperature was substantiated by means
of probe measurements [12] and is confirmed by numerical code calculations [21].

a) Loss frequency concept
This concept appears particularly reasonable when the mean free path length of the ions
due to momentum transfer collisions with the neutrals

λi ≈
v̄i

nH〈σcx
i0 vi〉

≈ (nHσ
cx
i0 )−1 (7)

1The situation is similar to a capacitor consisting of two concentric infinite cylinders. Its capacitance per unit
length C = 2πε/ ln (rw/r0) vanishes for rw →∞ (see [19] for a discussion).
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is much longer than the length of the plasma. Here v̄i =
√

8kBTi
πmi

is the mean velocity of
the ions and only the dominating charge exchange collisions have been considered. The
stationary equation of continuity then reads:

0 =
1
r

∂

∂r
rD⊥

∂ne

∂r
+ (νion − νloss)ne . (8)

The frequency of the losses is obtained by distributing the ion losses at the neutralizer
plate over the volume. This leads to νloss = 1/τ‖ = Γs dA/(neL dA). Note that the
infinitesimal area dA = 2πr dr cancels. Here, Γs, the particle flux density at the target
surface, equals the ion saturation flux density Γs = 0.5 neci. Inserting for ci the ion sound
velocity we finally get

νloss =
1

2L

√
kB(Te + Ti)

mi
. (9)

Again, Eq. (8) will not allow us to determine the absolute value of the electron density
but only its shape. This is because the (anomalous) diffusion coefficient D⊥ and the ion-
ization and loss frequencies do not depend on ne. Having thus found a particular solution
of Eq. (8), then multiplying this function by a constant factor will again be a solution. As
indicated in the last subsection the absolute density can be obtained only by invoking the
energy equation.
We want to solve Eq. (8) by first approximating the source term by a δ-function and as-
suming D⊥ and νloss being constants. We then get the equation

1
r

∂

∂r
r
∂ne

∂r
− k2ne = −νionne∆

D⊥
δ(r − r0) (10)

with k =
√
νloss/D⊥. Eq. (10) is solved by the modified Bessel functions I0(r) and

K0(r) that satisfy the following relations for x � 1: I0(x) = 1,K0(x) = − ln (x/2) +
0.577 . . . , and for x � 1 : I0(x) = 1√

2πx
exp (x), K0(x) =

√
π
2x exp (−x). Assuming

the absorbing wall at infinity the solution is therewith obtained to

ne(r) = A

{
I0(kr)K0(kr0) r ≤ r0
I0(kr0)K0(kr) r ≥ r0

. (11)

Integrating Eq. (10) over the infinitesimal range r0 − ε ≤ r ≤ r0 + ε and applying the
Wronski relation K ′0(x)I0(x)−K0(x)I ′0(0) = −1/x the coefficient is found to be

A = νion(r0) ne(r0) r0 ∆/D⊥. (12)

Inserting this into in Eq.(11) and putting r = r0 the density at the source region cancels
and we get a relation for the diffusion coefficient similar to Eq. (6)

D⊥ = νion(r0) r0 ∆ I0(kr0)K0(kr0) . (13)

With the same data as before and anticipating k = 33 m−1 we get this time with x0 =
kr0 = 1.15 and I0(x0)K(x0) = 0.46 for the diffusion coefficientD⊥ = 3.2·10−4 νion =
4.5 m2 s−1. The more general treatment, including the true sources shown in Fig. 7, is
presented in the appendix A. It will be shown there that the approximation (13) is a very
good one.
By means of Eq. (12) and (13) the expression (11) can finally written as

ne(r) = ne(r0)

{
I0(kr)/I0(kr0) r ≤ r0
K0(kr)/K0(kr0) r > r0

. (14)
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This function is continuous at the position of the source r0 but not so its derivative. It also
shows the desired property of hollowness. Fitting this function to the measured profile will
deliver a value of k from which in turn the diffusion coefficient can be obtained via

D
(a)
⊥ = νloss/k

2 . (15)

Whereas Eq. (13) results from the balance between source strength and fluxes this second
relation follows from the balance of perpendicular and parallel losses in the source free
region.

b) Parallel diffusion losses
Let us consider the parallel components of the momentum equations for electrons and ions:

0 = −∂pe
∂z − eneEz

0 = −∂pi
∂z + eniEz −miνmniu‖

(16)

in which νm = νel
i0 + νcx

i0 + νion is the total momentum transfer frequency of the ions
due to elastic and charge exchange collisions with the neutrals and production of ions by
ionization, respectively. Because of their small mass a corresponding loss term can be
neglected in case of the electrons. In addition, the inertia forces are neglected because
of the damped motion enforced by the friction forces. Adding both equations in (16),
assuming quasi-neutrality ne = ni = n and constant temperatures, the electric field cancels
and we get kB(Te + Ti) ∂zn = −miνmΓ‖. The ambipolar flux density is thus obtained to
Γ‖ = −D‖ ∂n∂z with

D‖ = kB(Ti+Te)
mi νm

= kB(Ti+Te)

minH〈(σel
i0+σ

cx
i0 )vi〉+〈σionve〉)

.

(17)

In case of hydrogen charge exchange collisions are much more frequent than ionization
and elastic collisions and the above expression simplifies to

D‖ = λi

√
π kBTi

8mi

(
1 +

Te

Ti

)
(18)

with the mean free path length given by Eq. (7). The equation of continuity is this time
given by

0 =
1
r

∂

∂r
rD⊥

∂ne

∂r
+

∂

∂z
D‖

∂ne

∂z
+ νionne . (19)

Assuming constant diffusion coefficients and approximating the source term again by a
δ-function its solution is found to be

ne(r, z) = ne(r0) cos (k‖z)× (20){
I0(k⊥r)/I0(k⊥r0) r ≤ r0
K0(k⊥r)/K0(k⊥r0) r > r0 ,

whose radial part is the same as in the previous section, Eq. (14). The parameter k⊥ is
equivalent with the former k, but k‖ is a new inverse length. The quantities are interlinked
by

k2
⊥D⊥ = k2

‖D‖ . (21)
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which actually reflects the relation ∇⊥ · Γ⊥ +∇‖ · Γ‖ = 0. Let us compare this relation
with the one derived in the previous section Eq. (15). Denoting the present solution asD(b)

⊥
we get for the ratio

D
(b)
⊥

D
(a)
⊥

= D‖
2Lk2

‖

cs
≈ π5/2

9
√

2

√
1 +

Te

Ti

λi

L
= 2.4

λi

L
. (22)

Here the approximate boundary condition ne(L) = ne(0)/2, leading to k‖ = π/3L, has
been applied. With λi ≈ 1 m and L = 2.6 m the above ratio is about unity.
More accurately, the parameter k‖ is defined by postulating the Bohm condition u‖ = cs

at z = L. The flow velocity is found from u‖ = −D‖∂z(lnne) to be

u‖ = D‖k‖ tan (k‖z) . (23)

Multiplying by L and introducing ζ = k‖L as a new variable, we have to solve the tran-
scendental equation

a ζ = cot ζ with a =
D‖

Lcs
(24)

for ζ. Using this parameter, Eq. (21) may be written in the alternative form

D
(b)
⊥ =

cs

L k2
⊥
ζ cot ζ = 2D(a)

⊥ ζ cot ζ . (25)

The function f(ζ) = ζ cot ζ (satisfying f(0) = 1 and f(π/2) = 0) provides a monoto-
nous reduction with increasing ζ. Eq. (21) is thus the generalization of Eq. (13) when the
interaction with the neutrals is to be taken into account.
Expression (23) allows us also to estimate the residence time of the particles starting at
position z: τ(z) =

∫ L
z
u−1
‖ dz. In terms of ζ the result reads

τ(z) =
L2

D‖
ζ−2 ln

(
sin(ζ)

sin(ζz/L)

)
. (26)

5. RESULTS

Fitting the experimental density profile shown in Fig. 6 by the analytical expression Eq.
(20) a value of k⊥= 33 m−1 is obtained. As to be seen from Fig. 8 the measurements are
very well reproduced by the theoretical expression derived for the δ-like source function
and an inclusion of the true source distribution does not lead to an essential improvement.
Having determined the value of k⊥ we next estimate the mean free path length from Eq.

2 4 6 8 10 12
r @cmD

2

4

6

8

ne @1017m-3D

FIGURE 8. Comparison of measured (points) and theoretical ne- pro-
files. Theory for a δ-source Eq. (14) (solid, red) and an extended source
region Eq. (31) (dashed, black) are shown. The projection of the hollow
cathode is indicated by a black box on the abscissa.
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(7) neglecting the elastic collisions. With nH = 2 · 1018 m−3 and σcx ≈ 5.0 · 10−19 m2

(see [22]) we find λi = 1.0 m. Since this length is smaller than L = 2.6 m, the length
of the device, we refer to Eq. (21) to calculate the perpendicular diffusion coefficient. As
temperatures we insert the mean values Te = 5 eV, Ti = 3 eV and obtain from Eq. (18)
D‖ = 28500 m2s−1 and cs = 2.8 · 104 m/s. The parameter ζ is determined from Eq.
(24) to 1.15 which results in a reduction factor of f(ζ) = 0.52. k‖ = ζ/L is obtained to
0.44 m−1. The flow velocity at the position of probe measurements is calculated from Eq.
(23) to 5950 m/s corresponding to a Mach number of M = u‖/cs = 0.21. The residence
time for particles leaving the anode is estimated from Eq. (26) to τ = 0.26 ms.
Finally, the desired perpendicular diffusion coefficient is received from Eq. (21) to D⊥ =
5.1 m2s−1. Almost the same values are obtained using the loss concept, Eq. (15) (D⊥ =
4.9 m2s−1), and from the different approach using the source strength, Eq. (13) (D⊥ =
4.5 m2s−1). These values are about twice the Bohm value DBohm = kB(Te+Ti)/2

16eB =
2.5 m2s−1.
It should be noticed that the neutral density nH enters the results differently. Whereas in
the first two cases we have D⊥ ∝ D−1

‖ ∝ 1/nH the perpendicular diffusion coefficient is
proportional to the ionization frequency and thus D⊥ ∝ nH in the third case.

6. SUMMARY

The hollow plasma profile in PSI-2 has been diagnosed by means of Langmuir probes.
It is found that the plasma extends radially far beyond the visible edge where it decays
exponentially with a characteristic length of 3 cm. The measured profile can be well de-
scribed by a theoretical function obtained by taking into account that there is a cylindrical
particle source all over the length of the device. The transport is provided by anisotropic
parallel and perpendicular diffusion.
Most important is the fact that the perpendicular diffusion coefficient determined is about
two orders of magnitude larger than predicted by classical diffusion. With D⊥ ≈ 5 m2s−1

it is in the range of anomalous diffusion found in fusion devices although the plasma pa-
rameters (ne, Te, Ti) and the magnetic field strengths in those are substantially larger. It
should also be realized that in contrast to tokamaks or stellarators there is no curvature of
the field lines in PSI-2. It thus appears that magnetically confined plasmas are driven –
probably by turbulent mechanisms – in such a way that D⊥ is always in the range of a few
m2s−1. We therefore would like to encourage those who are developing turbulent transport
codes to use the information given in this paper for benchmarking their theories.

APPENDIX A. RADIAL PROFILES

Solution (11), obtained for a δ- source function, allows us to calculate the density func-
tion for any source distribution q(r) = n0 neSion by integration:

ne(r) =
1
D⊥

(
I0(kr)

∫ ∞
r

K0(kr′) q(r′) r′ dr′ +K0(kr)
∫ r

0

I0(kr′) q(r′)r′ dr′
)
.

(27)
Introducing the normalized source function by means of q̂ = q(r)/qmax with qmax =
νion(r0) ne(r0) and the dimensionless radial coordinate x = k r we have the general result

ne(x) = ne(x0)
νion(x0)
k2D⊥

(
I0(x)

∫ ∞
x

K0(x′)q̂(x′) x′ dx′ +K0(x)
∫ x

0

I0(x′)q̂(x′)x′ dx′
)
.

(28)
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Putting x = x0, we get an identity from which the general relation

D⊥ =
νion(x0)
k2

(
I0(x0)

∫ ∞
x0

K0(x′)q̂(x′) x′ dx′ +K0(x0)
∫ x0

0

I0(x′)q̂(x′)x′ dx′
)
.

(29)
is received. With the source function shown in Fig. 7 a value ofD⊥ = 3.0·10−4 νion(r0) =
4.5 m 2 s −1 is obtained by numerical integration – in good agreement with the first ap-
proximation derived from Eq.(13).
Note that x0 = kr0 is the radius where the derivative of the source function vanishes
dq/dx|x0 = 0. This does in general not coincide with the maximum of ne. This posi-
tion is obtained from dne(x)/dx|x=xm

= 0. Inserting Eq. (28) it is found by solving the
transcendent equation

I1(xm)
∫ ∞
xm

K0(x′)q(x′) x′ dx′ = K1(xm)
∫ xm

0

I0(x′)q(x′)x′ dx′ . (30)

Having determined this position, the normalized profile n̂(x) = ne(x)/ne(xm) is given by

n̂(x) =
I0(x)

∫∞
x
K0(x′) q(x′) x′ dx′ +K0(x)

∫ x
0
I0(x′) q(x′)x′ dx′

I0(xm)
∫∞
xm

K0(x′) q(x′) x′ dx′ +K0(xm)
∫ xm

0
I0(x′) q(x′)x′ dx′

. (31)

Because of q ∝ ne an iterative procedure, starting e.g. with expression (11) as a first
approach on the right hand side, may be needed to obtain a result with the desired accuracy.
For a box-like distribution q̂ = (θ(x− x1) − θ(x− x2)) an analytical solution can be
derived using

∫
xK0(x) dx = −xK1(x) and

∫
xI0(x) dx = xI1(x). The result reads:

n(x) =
1
N


I0(x) (x1K1(x1)− x2K1(x2)) x ≤ x1

I0(x) (xK1(x)− x2K1(x2)) +K0(x) (xI1(x)− x1I1(x1)) x1 < x < x2

K0(x) (x2I1(x2)− x1I1(x1)) x ≥ x2

(32)

with the normalizing nominator

N = I0(xm) (xmK1(xm)− x2K1(x2)) +K0(xm) (xmI1(xm)− x1I1(x1)) . (33)

The maximum is this time to be determined from

x1I1(x1)K1(xm)− x2I1(xm)K1(x2) = 0 . (34)
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